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Abstract It is shown that the fracture surface energy of heterogeneous brittle materials 
(polycrystals, composites, ceramics, rocks) depends on their dmswctural  chmcteristics, 
namely the fractal properties of the network of microcracks. A quantitative approach for 
calculation of fracture energy from d c m k  network fractal parameters is suggested. Very 
high experimental values of fracture energy for heterogeneous brittle malerials can be easily 
explained in the framework of the fractal model. 

1. Introduction: the fractal nature of fracture 

It is well known from experiments that the fracture energy G of a composite material is 
much larger than that of homogeneous ones. We restrain ourselves to brittle heterogeneous 
materials where processes such as plastic deformation are negligible. For example the 
fracture surface energy of quartz crystals is of the order of 1 J mWz while the fracture 
energy of quartz sandstones reaches hundreds of J m-' (table 1) [l]. This has even led 
some experts to conclude that the concept of fracture energy is invalid for heterogeneous 
materials. Here we define a heterogeneous material as a system that is not necessarily 
chemically or mineralogically heterogeneous: heterogeneity may appear in form of grain 
boundaries, pores or cracks. 

Let us consider a sample containing a population of cracks. As for a single crack, the 
total mechanical energy of the system (sample + loading apparatus) varies by an amount 
of 6Em (<O) when the crack population evolves (by propagation of existing cracks or 
nucleation of new cracks). At the same time, the creation of new crack surfaces costs 
an amount of energy proportion to the created surface 6A. We define the proportionality 
coefficient as twice the fracture surface energy yp On the other hand we define G, the crack 
extension force, as the ratio of the mechanical energy released during the creation of new 
crack surfaces over the created surface area. For a single crack the criterion of evolution is 
that the propagation of the crack is possible if G is at least equal to G,, the critical crack 
extension force, defined by 

G 6, = -6Em/6A = 2yc (1) 

which simply means that the mechanical energy decrease has to be greater or equal to 
the energy consumed by the surface creation. For a population of cracks, this criterion 
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Table 1. Aiter [l]. 

Crystals 

Q u e  synthetic 
(]oil) 0.41 

(ioio) 1.03 

Calcite 
(mil) 0.274.35 

Fracture surface energy ys (1 r r 2 )  

(iow 0.5 

Quam fused 3.7 

Rocks 

Quare rocks 
Fontainebleau sandstone 7-27 
B a a  sandstone 10 
Val d‘nliez sandstone 49 

Calcite rocks 
0” marble 35 
Solnhofen limestone 12 
Ekeberg martrle 20-50 
Red bland limestone 19 
Danby marble 40-50 
HolSfon limestone 12 

Alpnach sandstone 47 

can be generalized by looking at all possible evolutions of this population. The criterion 
of fracture will then be that at least one possible evolution leads to a mechanical energy 
decrease greater than or equal to the energy consumed by surface creation. Obviously we 
have neglected energy losses due to friction on crack surfaces, acoustic emission, heating 
and other non-varnishing entropy variations. By doing so the criterion of propagation takes 
the same form as (1). In this case yc may be seen as a macroscopic quantity that makes the 
link between the new surfaces created and the energy it costs to create them, if we were 
able to measure this energy. By neglecting energy wells other than the surface creation, we 
underestimate the G value necessary to propagate cracks. This means that in the following 
model our derived yc values should be lower than the observed ones. Indeed this is what 
happens as we will see later. We will now use G for fracture surface energy, omitting the 
factor of two. 

From (l), we infer that the growth of crack surfaces decreases the mechanical energy 
of the system. In the following we omit the subscript c and assume that G = G,. The great 
discrepancy between G of composites and that of crystals can be explained quantitatively 
as a result of a classical approach [2], ignoring red complicated fracture structures present 
in heterogeneous deformed media (figure l(a)). Experiments show that the real structure of 
fracture is quite different, and that the total surface of microcracks is very large (figure l(b)) 
and hence a lot of energy should be spent to create it. This fact is not usually taken into 
account because unless a special technique is applied for visualization of the microcrack 
network 131, which is mainly concentrated in the so-called process zone [4] (figure l(b)), 
one observes only one trace of this network, namely the macrocrack, which divides the 
sample into two parts. Accordingly the whole energy that has been spent on the formation 
of a large number of microcracks is ascribed to a sole rupture with the surface area much 
smaller than the overall surface of microcracks. As a result the apparent fracture energy 
G, is much larger than the true fracture energy Go. The question is: what formalism can 
provide a quantitative basis for evaluation of Go, which has an apparent value G,? 
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Figure 1. (a) The a b m c t  model of a crack under 
tension used in linear fracture mechanics (LFM). (b) 
A model of a crack process zone with length L and 
transverse size h. (c) A natural crack network in 
Stockbridge dolomite marble. The sample is isotropic 
with average gnin size 0.3 mm. The double-cantilever 
beam test specimens with cenual slots (S)  were used in 
experiments. The successive stages of the development 
of the crack pattern are shown: solid lines correspond 
to 73% and dashed lines to 85% of maximal applied 
stress. Microscopic inspection of a normal cross-section 
proved that the crack nehvork is isotropic in space 
(after 131). 

As a rule experiments on fracture energy measurements are realized in such a way 
that essential microstructural parameters are not available. In order to obtain these 
parameters, a detailed microscopical study of the process zone is needed, and this is more 
the exception than the rule. Nevertheless the paper of Nolen-Hoeksema and Gordon [3] 
reveals microstructural-details that are necessary. Figure 2 shows that the fracture of a 
relatively homogeneous polycrystal (dolomite marble) with a thin groove under traction 
does not follow a single plane as is predicted by linear fracture mechanics (LFM). Instead a 
three-dimensional microcrack network is formed near the tip of the groove. Furthermore it 
is evident from figure 2 that the microcrack network does not initiate at the groove tip as 
follows from LFM but quite far from it. That means that even at loads approaching 6 M O %  
of breaking load local differences between stress and strength dominate over global stresses. 
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J /  

Figure 2. Successive stages of development of a microcrack network near the lip of a slot (S); 
percentages of maximal stress are indicated. New portions of microcracks are shown in bold 
lines. In the last panel the main rupture trace is shown by dashed lines (after [3j). 

So, in contradiction to the widely developed growth models of fracture, namely 
diffusion-limited aggregation (DLA) [5], thecrack network does not grow from some definite 
point (seed) but it is rather stacked from separate elementary ruptures and their clusters. 
Thus the process looks more like percolation or cluster-cluster aggregation process than 
DLA [6].  The first examination of the structures shown in figures I(c) and 2 leads us to 



Investigation of the fracture energy of heterogeneous brittle materials 1861 

suggest that it is fractal. 

2. Fractal dimension and fracture energy 

Now if the object is fractal, it should be self-similar and the number of elementary 
cells in squares with successively increasing sizes should scale, according to 141. An 
iteration process can then be conducted, starting with an initial elementary cell. This initial 
elementary cell in our case is a large square LO x LO. At a second stage the elementary 
cell is defined as a square L o p  x Lo12 and so on, except for the last iteration, where 
the scale was reduced 50 times. At each iteration the number M of elementary cells that 
intercept a fracture is counted. Such cells are labelled ‘destroyed cells’. The results are 
given in table 2. The fractal dimension Dz of a network of cracks for given cross-section 
of specimen is 

Dz = log ME/ log Li ( 2 )  

where Mi and Li are respectively the number of destroyed cells and size of the system in 
units used at the ith iteration. Figure l(c) shows only stages 1-4 of the iterative process in 
order to not blur the picture. The results, given in table 2, indicate a fractal dimension Dz 
= 1.6, which is that of the planar cross-section of the object [SI. The bulk fracture shucture 
should have fractal dimension D1 = Dz + 1, because stacking of thin layers of (isotropic) 
fractals with 9 = 1.6 results in a structure with D = DS = 2.6. 

Table 2. 

Stage of iteration (i) 1 2  3 4 5 6 
TOM number of elementary cells in the abject 1 4 16 64 256 2500 

I - I I 
Linear size of object in reduced units-quantity Li in (2) 1 2 4 8 16 50 
Number Mi of destroyed cells 1 3 11 27 75, 441 
Ratio of number of destroyed cells to total number of cells 1 0.75 0.69 0.42 0.292 0.176 
Fractal dimension LIZ = log Mi/ log Li 1 I,SS 1.73 1.58 1.56 1.56 

Size L of elementary cell in units of the initial one 1 ;  4 B 16 50 

There are many experimental studies proving the fractal dimension of fragmentation to 
be 2.5. Such results are obtained for broken coal, chimney rubble after a nuclear explosion, 
basalt after the impact of a projectile, synthetic and natural fault gouges [9] and systems of 
tectonic faults [lo], so this figure seems to be universal for delocalized isotropic fracture. 
Note that the value of D = 2.5-2.6 is close to the 3D infinite percolation cluster dimension 
D = 2.5, though theoretical models give different thresholds for percolation and elasticity 
and therefore different fractal dimensions for these two critical structures. 

Thus it seems reasonable to use a fractal approach for evaluation of the ‘mass’ M 
of ramified crack networks. The definition of M depends on the mode of evolution of 
the heterogeneous structure, namely, whether it is fractal or homogeneous, which in tum 
depends on the ratio of the characteristic size L’ of the system and the correlation length 
LL. In the following we assume that L and Lc are dimensionless lengths expressed in units 
of the size of an elementary object of the heterogeneous system, that is, the sample grain 
size 1: 

L = L‘/l L, = LL/l. (3) 
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Depending on the ratio of the system size, that is of the length of the fractured (process) 
zone L to the correlation length of the fractal microcrack network L,, two limiting cases 
should be distinguished 

(i) L < L,, the system is in the fractal regime: 
(ii) L > L,, the system is in the homogeneous regime. 

By definition G is a product of the specific fracture energy go and the total surface 
area A0 of the crack network, which naturally should be proportional to the mass M of the 
network of cracks: 

A0 C( M (4) 

where M is dimensionless. 
When L < L, (fractal regime), the total mass of cracks including the main rupture is 

M C ( L ~  (5) 

according to the mass definition in the fractal regime [7] and hence 

G M goLD. (6) 

The apparent specific fracture energy g, is usually obtained by dividing the total measured 
fracture energy G by the apparent surface area A,, which is Euclidian and thus can be 
expressed in terms of the crack size (or process zone length) as a quantity proportional to 
Ldc. Here dc is the Euclidian dimension of a planar or linear crack. Let us assume that dc 
= 2. Then 

g, M GIL” (7) 

or using (6) 

g, M go LD-dc. (8) 

This means that in the fractal regime g, is larger than the true value go as D is larger than 
d, (D = 2.6; dc = 2) and increases with lengthening of the microcracked area or process 
zone L (figure l(b)). If D = dc the apparent energy g, is equal to the true energy go. 

L, (homogeneous regime), the process zone contains so many supergrains 
with size L, that it can be considered to be homogeneous. In this case the mass of the object 
of size L is the product of the mass Lf of supergrains and the number of such supergrains 
in the considered volume, which is (L/L,)d. In our case Ld is the volume V of the process 
zone and L: is the volume of the Euclidian figure (cube) that covers the supergrains. Thus 
from [7] we obtain 

When L 

M = ~ f - d v  = L , D - ~ L ~  (9) 

where for hulk processes d = 3. 

volume V of the process zone is 
Then the total amount of energy due to the creation of crack surfaces distributed in the 

(10) D - d y  G = goLe 
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where V = whL, and w,  h and L are accordingly width, height and length of the process 
zone. The apparent specific fracture energy g, is equal to G divided by the apparent crack 
surface area wL: 

(11) g, = G / w L  = Lf-dhgo. 

For an isotropic network of cracks w = h = r where r is the transverse size .of the process 
zone. This parameter can be expressed in units of correlation length L,: 

r = nL, (12) 

where n, is the number of supergrains of size L, over the distance r .  Then from (11) and 
(12) 

(13) 

(14) 

(D+I)-d ga = wd, 
or 

(Df1)-d go = g&L, 

The apparent specific fracture energy in the homogeneous regime does not depend on the 
process zone length L,  as in the fractal regime (8). However, it depends on the fractal 
dimension D of the microcrack network and process zone transverse size n ,  expressed in 
units of L,. The larger n and D, the larger is the ratio g,/go: because usually L, = LL/l z 1 
and (D + 1 - d) z 0, or in other words, the larger the ‘thickness’ of process zone and 
the finer the microcrack network in this zone, the larger the deviation of apparent specific 
fracture energy from the true one. Thus from (14) it follows that in order to calculate the true 
fracture energy go of a heterogeneous material in the homogeneous regime it is necessary to 
know besides the apparent fracture energy G. such parameters as the correlation length L, 
of the network of cracks, the process zone effective radius n in units of L, and the fractal 
dimension D of the crack network. 

If G, is measured in the fractal regime it depends on sample size and in order to evaluate 
go we need to know L and D .  If the fractal dimension of the crack network in the process 
zone does not change with its growth the true fracture energy can be obtained as the slope of 
the G versus log L curve. It is evident from table 2 that the fracture structure is fractal up to 
lengths Li = 0.5L0, i.e. on the scale less than the process zone characteristic transverse size 
L, = nLc. For boxes with side L = L, the dimension of  the process zone is not fractal: 
D = d = 2, and for these scales the shucture is homogeneous. This means that expression 
(14) should be used for calculation of fracture energy. Note that even in the homogeneous 
regime the fractal dimension enters the formula for G as the mass M of the object is defined 
in terms of correlation length L,, which is now a new natural representative volume size 
or size of supergrain. 

In order to evaluate &/go for experimental data (figure l(c)) it is necessary to extract 
n and L, values from them. It is known that L, is approximately equal to the size of the 
largest void in the fractal network. According to figure l(c) the size of the largest void is 
2 mm or L, = 7 in units of grain size E ,  which is 0.3 mm. The same figure gives for the 
characteristic transverse size of the process zone a value of 8 mm or in units of L,, n = 4. 
Then from (14) it follows that 

g,/go = 4.7°-6 cx 13 
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i.e. in this particular case the apparent specific fracture energy is more than ten times larger 
than the true one. From table 1 it follows that g, for calcite rocks varies between 12 and 
100 J m-2 while go for the calcite crystal is 0.6 J m-2. Thus the ratio g,/go varies between 
30 and 170. In our calculations we take as the natural elementary unit size the grain size 1. 
If instead of 1 we consider as elementary the grain facet size lf the value of L, should be 
roughly tripled because 11 = ~ l / 3  (figure 1 in 131 reveals nearly hexagonal grains of calcite 
by electron microscopy). Then the ratio g,/gO approaches 40, which is a little nearer to 
the experimental value, 130 J m-’, given in [3] for this sample, and fits in the fracture 
energy set of data for calcite rocks (g,/go 2: 40) quoted in table 1. It should also be taken 
into consideration that energy can be lost by friction on crack faces, acoustic emission 
and heating. In addition the pattern of cracks used in this analysis corresponds to 85% of 
maximal stress. This is why our figures should be considered as a lower limit for the &/go 
ratio. The important point is that it is possible nevertheless to infer an approximate value 
of this ratio by the measurement of few geometrical parameters of the crack network. The 
general conclusion is that if the correlation length is of the order of 10 elementary units 
(grain or facet size) and the process zone also contains approximately 10 correlation lengths 
in the transverse direction then the results shown in table 1 are easily interpreted in terms 
of fractal energy of fracture. 

4 
lbgbl 

Figure 3. The surface of the percolation threshold in (xc, logkll, logki)-space for a 32 x 32 
square lattice (after [Ill). 

3. Transition from Euclidian to fractal fracture 

In nature both fractal and Euclidian modes of fracture can be observed. Understanding of 
the transition from the Euclidian to the fractal pattern in fracture structures can be gained 
by considering the model of anisotropically correlated percolation. Major points of this 
model are (i) elementary ruptures interact due to overlapping of their (scalar) stress fields, 
giving rise to correlation effects and (ii) at the same time the action of global deviatoric 
stresses or anisotropy inherent to the material leads to the existence of preferred directions 
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Figure 4. Macroscopic fracture (bold lines) and its fractal dimension in B 128 x 128 triangular 
lattice for (a) vertical traction and (b) uniaxial vertical compression (after [IZ]). 



in the arrangement of elementary ruptures. Thus both correlation and anisotropy should be 
taken into account simultaneously. In [ l l ]  this process has been simulated on the square 
lattice of nodes. To introduce anisotropic correlation two different correlation parameters k l  
and kll are used for two perpendicular directions. These correlation parameters show how 
many times the probability of a site being occupied when having an occupied neighbour in 
the horizontal direction (kll) or the vertical direction (kl) on a square lattice is higher or 
lower than the probability of being occupied randomly. By assuming that an occupied site 
is equivalent to an elementary crack, this kind of model is an illustration of how to take 
into account correlation and anisotropy effects in the propagation of cracks. The results of 
simulation for a 32 x 32 square lattice are represented in figure 3, which shows how the site 
percolation threshold x, depends on anisotropic correlation factors k i  and kll. It is obvious 
that variations of x, are quite significant. The cross marks the point that corresponds to 
the random case, i.e. kL = kll = 1. Here we need to damage 60% of the nodes in order 
to obtain the infinite cluster. The left part of the diagram with negative log kL and log kl 
(repulsive interaction) is relatively stable with x, approximately the same as for the random 
case. For large values of log(kll/kL), i.e. extremely strong anisotropic correlation (lower 
right side of the diagram) x, is quite small: actually a line of damaged sites is enough to 
create an infinite cluster. This area should correspond to the LFM domain and is realized 
at very high ratio of correlation factors, namely when kn/kL approaches lo4. Very large 
positive correlations (upper part of the plot) lead to the necessity of ‘crushing the lattice 
into dust’ to obtain an infinite cluster and so xc = 1. Despite the fact that these results 
were obtained on finite lattices, the value of 0.6 for x, in the random case shows that 
the obtained percolation threshold values are not too far from theoretical values (0.593 for 
random site percolation on a square lattice). This means that the surface character is reliable 
and will be preserved by increasing the lattice size, though some details may vary. The 
percolation threshold surface shown in figure 3 can be considered as a characteristic of 
the number of microcracks that are necessary to create the macroscopic rupture and hence 
some characteristic of the fracture energy for different fracture patterns. This model is an 
illustration of how combining correlation effects (stress concentrations due to the presence 
of cracks) by increasing k l  or kli and anisotropy by changing the ratio kll/kL leads to the 
transition from Euclidian (x, + 0) to fractal fracture (xc > 0). 

It is interesting to note that the transition from Euclidian to fractal fracture has been 
observed in computer simulations of failure of a triangular lattice of bonds depending on 
the mode of loading [12]. For traction and shear the main rupture is almost linear with 
D = 1.05 (figure 4(a)). Under uniaxial or biaxial compression the fracture pattern is much 
more ramified and leads to D-values of about 1.4-1.5 (figure 4(b)). These varying patterns 
reflect competition between local interactions and the global stress field. 

The supposed model can also explain the well known grain size dependence of fracture 
energy of polycrystals [13], showing a maximum in energy consumption on the meso-grain 
scale (B) and low values of G for both large (C) and fine (A) grains (figure 5). The fine- 
grained material is almost as homogeneous as glass or crystal. We can therefore assume 
that both the correlation length and process zone are of the order of the grain size 1. Then 
L:/l = L, = 1 and n = 1 (in other words D = d) .  As a result g, is close to go. At 
the coarsegrain end of the diagram the correlation length is so large that it exceeds the 
sample size. Thus effectively the material again is homogeneous, but this is a finite-size 
effect and it should disappear in larger samples. From our conjecture it follows that the 
correlation length of the crack network can be obtained from these data as the sample 
size for which G drops steeply. Thus maximal energy consumption should be observed at 
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Figure 5. Fracture energy versus grain size for alumina samples (AlzO,) (after [13]). 

maximal ramification of the microcrack network in the process zone when L, and/or n are 
large. 

Another phenomenon that can be explained in the framework of the fractal fracture 
energy concept is crack arrest in a heterogeneous material after dynamic propagation during 
which rupture is almost linear (or planar). Decrease of local stress near the tip of a running 
crack at the final stage of crack propagation makes other local stresses near inhomogeneities 
more and more important. As a result the crack begins to ramify, creating a fractal structure 
with large energy consumption, and this eventually leads to crack arrest. 

4. Conclusion 

We have shown that the fracture surface energy of heterogeneous brittle materials depends 
on the fractal properties of the network of microcracks. We have proposed a theoretical 
approach to derive a fracture energy value from microcrack network fractal parameters. 
When applied to experimental data, this model of fractal fracture may explain the observed 
high fracture energies for aggregates when compared to single-crystal values. 

It seems promising to develop further the fractal fracture energy concept by taking 
into account additional features of percolation structures such as ramification, lacunarity 
and anisotropic correlation and also try to solve some inverse problems, namely to define 
the fractality of fracture pattern from the known ratio gJg0 and L,, to define anisotropic 
correlation factors from fractograms and so on. Practical applications of the fractal approach 
can be envisioned, such as designing durable composites by the control of L, and n in the 
process zone. 
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